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Figure 1. (a) Success rate (%) comparison of our model against RT-1 [7], RT-1-X [48], RT-2-X [48], Octo [62], and OpenVLA [30] across
simulated benchmarks (first thee charts) and real-world evaluations (last three charts), using various robots: Google robot, WidowX robot,
Realman robot, and Franka robot. All models are trained on the expansive Open X-Embodiment dataset [48] (expect for RT-1 that trains
only on the Google Robot subset) and finetuned on a small amount of data for real robot experiments. (b) Scaling behavior: averaged
success rate on SIMPLER [33] with respect to action module size. (c) Examples of Realman Robot executing tasks involving sequentially
stacking multiple cups and picking and placing unseen objects.

Abstract

The advancement of large Vision-Language-Action (VLA)
models has significantly improved robotic manipulation in
terms of language-guided task execution and generalization
to unseen scenarios. While existing VLAs adapted from pre-
trained large Vision-Language-Models (VLM) have demon-
strated promising generalizability, their task performance
is still unsatisfactory as indicated by the low tasks success
rates in different environments. In this paper, we present
a new advanced VLA architecture derived from VLM. Un-
like previous works that directly repurpose VLM for ac-
tion prediction by simple action quantization, we propose
a componentized VLA architecture that has a specialized
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action module conditioned on VLM output. We systemat-
ically study the design of the action module and demon-
strate the strong performance enhancement with diffusion
action transformers for action sequence modeling, as well
as their favorable scaling behaviors. We also conduct com-
prehensive experiments and ablation studies to evaluate the
efficacy of our models with varied designs. The evalua-
tion on five robot embodiments in simulation and real work
shows that our model not only significantly surpasses exist-
ing VLAs in task performance but also exhibits remarkable
adaptation to new robots and generalization to unseen ob-
jects and backgrounds. It exceeds the average success rates
of OpenVLA which has similar model size (7B) with ours
by over 35% in simulated evaluation and 55% in real robot
experiments. It also outperforms the large RT-2-X model
(55B) by 18% absolute success rates in simulation. Code
and models can be found on our project page.
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1. Introduction
In recent years, there has been a surge of interest in robotic
control models equipped with visual capabilities [7, 8, 15,
30, 34, 45, 48, 58, 60, 62, 67, 69]. Among them, the de-
velopment of large-scale Vision-Language-Action (VLA)
models [8, 30, 32] are particularly promising, which em-
powers robots to perform complex tasks guided by natural
language instructions and potentially manage objects or en-
vironments that deviate from the training distribution. Ad-
ditionally, they exhibit rapid adaptability to new tasks and
embodiments through finetuning.

The notable generalization capability of large VLAs can
be attributed to both their substantial model size and the po-
tent Vision-Language-Models (VLM) [13, 28, 35] that serve
as their foundation. These VLMs are typically pretrained on
massive, Internet-scale image-text pairs, which play a cru-
cial role in enhancing VLA generalization to novel objects
and semantically diverse instructions [8].

Existing large VLAs often adapt VLMs for action pre-
diction in simple ways, leading to several issues that hin-
der task performance. For instance, works like [8, 30] di-
rectly quantize the continuous spectrum of robot actions
into discrete bins in accordance to the next token predic-
tion scheme of VLMs. However, such a simple quantiza-
tion, unlike sophisticated tokenizers such as those designed
for images [65, 72] and audio [19, 73], poses difficulties
in action learning and limits action precision. [32] intro-
duces additional action heads, such as LSTMs, to transform
VLM output into actions. The shift to a regression-based
learning scheme, however, overlooks the probabilistic and
multimodal1 nature of actions.

In this paper, we propose a new VLA model architec-
ture derived from VLM. Instead of repurposing pretrained
VLMs for action prediction, we use the cognitive informa-
tion extracted by VLM to guide the action prediction process
of a specialized action module. To handle the inherent char-
acteristics of action signals – continuous, multimodal, tem-
porally correlated, and requiring high precision – we em-
ploy advanced diffusion-based transformers (DiT) [51] as
our action modules, preconditioned on VLM output via the
attention mechanism.

The intuition behind our design is the decoupling of
“cognition” and “action” capabilities. While the large
VLMs amass broad visual and semantic knowledge learned
from vast amounts of text and images, the cognitive capa-
bility and the output language modality have fundamental
gaps to dense robot actions. Rather than directly repurpos-
ing the VLMs, we advocate the design of componentized
VLAs with a dedicated action module.2 This action mod-

1A robot can follow multiple possible trajectories to accomplish a task.
2As an interesting analogy, our human brain has visual cortex [25],

language-relevant cortex [21], and motor cortex [71] – the last being dedi-
cated to the control of human body movements.

ule is specialized for action signal modeling with cognition
model output as preconditions. We synergize the cognition
and action capabilities via end-to-end training or finetuning.
Hence, our approach is named CogACT.

We systematically study the different backbone architec-
tures for the action module as well as their scalability on
model size, and several notable insights have emerged. For
example, it is found that sequential modeling with a dif-
fusion transformer significantly outperforms single-step ac-
tion prediction. More crucially, we identified a favorable
scaling behavior of the action module with diffusion trans-
formers: adding several hundred million parameters, which
is relatively minor compared to a 7B VLM base, results in
sizable performance enhancements. This finding suggests
the advantages of a specialized action module and a more
efficient approach for VLA model scaling.

In addition to our study on action module design, we also
introduce some accompanying algorithms of independent
interest. An Adaptive Action Ensemble (AAE) algorithm is
proposed to fuse the past action predictions in an adaptive
manner, which brings notable performance improvement.
We train our VLA models on the Open X-Embodiment
dataset [48], and evaluate them on both simulation [33]
and real-robot benchmarks. The comprehensive evaluation
and comparisons show that our model performs remarkably
well, surpassing existing VLAs by a wide margin.

The contributions of this work are summarized below:
• We introduce the integration of the action diffusion

process into large-scale VLA models.
• We propose a componentized VLA model architecture

and study the design of large action modules3 as well
as their scaling behaviors.

• We propose an adaptive action ensemble algorithm
which is simple yet effective for temporal fusion.

• Our model achieves significantly better performance
than previous VLAs, exhibiting quick adaptation to
new robots and tasks and effective generation to un-
seen objects and backgrounds, as shown in Figure 1.
All our code and models are publicly released.

2. Related Works
Vision-Language-Action Models. The success of Large
Language Models (LLMs) [2, 9, 63, 64] and Vision-
Language Models (VLMs) [1, 14, 28, 37, 61] has inspired
the development of Vision-Language-Action (VLA) mod-
els, which extend the capabilities of VLMs by integrating
action generation. For instance, RoboFlamingo [32] ex-
tends OpenFlamingo [3] by incorporating a head network
to predict actions and optimizing with MSE loss. RT-2 [8]

3Our largest action DiT module is of 300M parameters. Although this
may seem modest, especially in comparison with large LLMs/VLMs, it is
considered large given the 7D vector space of robot actions we address.
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tokenizes 7D actions into discrete tokens and uses the VLM
PaLI-X [13] to predict them autoregressively like language
tokens. OpenVLA adopts a similar approach, tokenizing
actions and training the Prismatic VLM [28] on the Open-
X-Embodiment dataset [48]. While these models benefit
from VLMs’ capabilities and demonstrate promising per-
formance and impressive generalization, they lack the con-
sideration that actions are inherently continuous and tem-
poral, a modality distinct from language. A group of meth-
ods [5, 11, 68] employ large-scale video generative pretrain-
ing to enhance visual robot manipulation learning without
leveraging pretrained VLMs, and promising results have
been demonstrated.

Large Action Models. There are some recent attempts con-
current to ours that explored large action models for gener-
alist robots. For example, [24] trained a diffusion trans-
former with 221M parameters and [38] further scaled the
action model size to 1B. Both works apply separate vision
and language encoders that are pretrained and frozen to pro-
cess language instructions and images, and they train the ac-
tion model to integrate these inputs and predict actions with
VLA data. Different from ours, these works cannot lever-
age the generalization and instruction following capabil-
ity of powerful VLMs pretrained on Internet-scale vision-
language aligned data.

Diffusion-Based Robot Policies. Recent studies [15, 50,
53] have introduced diffusion models as an innovative ap-
proach for modeling robotic actions. These diffusion poli-
cies have demonstrated strong capabilities to capture the
multi-mode nature of robotic action distributions and effec-
tively model the various feasible trajectories that a robot can
take to accomplish a given task [15]. Inspired by diffusion
policies, Octo [62] supplements a transformer-based back-
bone architecture with compact diffusion heads of 3M pa-
rameters to adapt the action output across different robots.
However, the small diffusion head falls short in capturing
the precise action distributions and the overall approach
does not benefit from strong vision-language models pre-
trained on web-scale data. In contrast, our work stud-
ies large, dedicated action modules (rather than “heads”)
with the diffusion transformer architecture. Besides, un-
like [15, 50, 53], we are interested in large VLAs derived
from VLM foundation models with strong generalization
capability.

3. Method
Problem Formulation. Our goal is to develop a VLA
model that enables different robots to physically execute
diverse tasks while receiving visual observations and lan-
guage instructions. Formally, given the language instruction
l and visual observation ot at time t, a model π predicts a
temporal action sequence (at,at+1, ...,at+N ) for execut-

ing the desired task:

π : (l,ot) → (at,at+1, ...,at+N ). (1)

While in general, at can describe various robot actions with
different control modes and end-effectors, we consider the
action space of a gripper with 7 degrees of freedom (DoF)
in this work:

at = [∆x,∆y,∆z,∆ϕ,∆θ,∆ψ, g], (2)

where ∆x,∆y,∆z are the relative translation offsets of the
end effector, ∆ϕ,∆θ,∆ψ denote the rotation changes, and
g ∈ {0, 1} indicates the gripper’s open/close state.

Overall architecture. To effectively handle complex vi-
sual observations and language instructions and collabora-
tively transform them into precise actions, we componen-
tize the model π into three parts: a vision module, a lan-
guage module, and an action module, as shown in Fig. 2.
We describe each part in details below.

3.1. Vision and Language Modules
Our vision and language modules are adapted from an ex-
isting VLM from [28] that has about 7B parameters in total,
similar to [30]. We briefly describe them below for com-
pleteness.

Vision Module. The vision module processes raw images
input into a set of perceptual tokens. It consists of power-
ful vision transformers, DINOv2 [49] and SigLIP [74], pre-
trained on Internet-scale image data, to capture rich visual
features and a comprehensive semantic understanding of the
observations. At each timestep t, the image observation ot

is fed into the two models, producing two downsampled
feature maps fDINO

t and fSig
t , respectively. These feature

maps are then concatenated along the channel dimension,
passed through a linear projection layer, and serialized into
a set of visual perceptual tokens, V = {v1,v2, ...,vNV}
with a length NV (we use 256 by default).

Language Module. The language module is responsible
for integrating visual information and language instructions
and conducting cognitive reasoning. Here, a LLAMA-
2 model [64] is applied as the backbone. The language
instruction l is converted into a set of linguistic tokens,
T = {l1, l2, ..., lNT }, using LLAMA-2’s tokenizer. These
tokens are then concatenated with the visual tokens V and
an additional learnable cognition token c, and processed by
the model using a causal attention mechanism. The result-
ing output feature fc

t , corresponding to the cognition token,
encodes integrated information that determines the action to
be executed for the current task. This serves as a condition
for the subsequent action module to interpret and derive the
desired actions.
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Figure 2. Overview of our architecture. Our model is componentized into three parts: 1) a vision module encoding information from the
current image observation into visual tokens; 2) a language module that integrates the visual tokens with the language instructions, and
produces a cognition feature determining the desired action to be executed; 3) a diffusion action module, which predicts a sequence of
multi-step actions conditioned on the cognition feature. An adaptive ensemble strategy is applied for trajectory ensemble at inference.

3.2. Diffusion Action Module
The action module receives the cognition feature as an in-
put condition to generate a series of actions, as defined in
Eq. (1) and (2). Given that real-world physical actions are
continuous and often multi-modal, we predict them using
a diffusion modeling process [47]. To model complex and
temporally-correlated actions, we apply a diffusion trans-
former (DiT) [51] as a powerful backbone for the action
decoding process.

Specifically, our action module takes the cogni-
tion feature fc

t along with a series of noisy actions
(ai

t,a
i
t+1, ...,a

i
t+N ) as input, where i denotes the cur-

rent denoising step. It predicts the final actions
(at,at+1, ...,at+N ) through multiple denoising steps. The
cognition feature and the noisy actions serve as input to-
kens to the transformer blocks, while the step information
i is added to the cognition feature with a sinusoidal posi-
tional encoding. We enforce the action model to predict
not only the current action at but also multiple future ac-
tions (at+1, ...,at+N ). This approach enhances the over-
all smoothness of the predicted actions at each time step
and increases the final success rates for task execution, as
observed similarly in previous studies [15, 75]. In prac-
tice, the number of predicted future actions is set to a small
value (N = 15 by default), leading to a context length of
N + 2 = 17 for the action module. This makes the diffu-
sion process highly efficient and does not introduce much
computational cost to the overall framework.

3.3. Training Objective
Our vision module, language module, and action module
are trained/finetuned end-to-end by minimizing the mean-
squared error (MSE) between the predicted noises from the
action module and the ground truth noises. The loss func-
tion is defined as:

LMSE = Eϵ∼N (0,1),i||ϵ̂i − ϵ||2, (3)
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Figure 3. Illustration of our action ensemble strategy with K = 2
(using the last 2 historical action predictions) as an example. The
action ensemble aggregates historical predictions with the current
prediction to jointly determine the final action to be executed.

where ϵ̂i is the predicted noise for the noisy action sequence
(ai

t,a
i
t+1, ...,a

i
t+N ) at the i’s denoising step, and ϵ is the

corresponding ground truth.

3.4. Adaptive Action Ensemble

During inference, our model predicts actions for multiple
time steps. One straightforward strategy is to execute these
actions consecutively (Action Chunking [75]) based on the
current observation, ot. However, this does not fully lever-
age the visual information available at each time step and
may result in jerky motion, as discussed in [75]. Alterna-
tively, executing only the action for the current time step
(i.e., at) also leads to a less smooth trajectory and dimin-
ished performance.

To alleviate these, [75] introduced a temporal ensemble
strategy that combines actions predicted for the current time
step from both present and past predictions using preset ag-
gregation weights. However, feasible actions for task exe-
cution can belong to different modes [15], and simply ag-
gregating them could result in an action that does not align
with any mode, which is suboptimal.

We propose an adaptive ensemble strategy which consid-
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ers similarities between actions to be aggregated, as shown
in Fig. 3. This approach avoid unreasonable aggregation of
actions from different modes. Specifically, let at|ot repre-
sent the action prediction for the current time step t given
the observation ot, and {at|ot−K , ...,at|ot−1} denote the
corresponding action predictions based on historical obser-
vations {ot−K , ...,ot−1}. We derive the final action ât to
be executed at time step t as:

ât =

K∑
k=0

wada
k · at|ot−k. (4)

Here, wada
k is an adaptive weighting scalar that assigns

greater importance to past predictions that are more simi-
lar to the current prediction at|ot:

wada
k = exp(α· < at|ot,at|ot−k >), (5)

where < ·, · > calculates the cosine similarity between two
actions, and α is a hyperparameter set to 0.1 in practice.

Our empirical results show that this adaptive action en-
semble strategy effectively boosts the success rate of task
executions while adding minimal extra cost to inference,
since past predictions can be readily cached.

4. Experiment
Training Dataset. We use the Open X-Embodiment
(OXE) [48] dataset as our primary training dataset. It in-
cludes over 1 million real-world robotic trajectories col-
lected from 60 datasets, covering 22 different robot embod-
iments. We use the similar subset of OXE as in Octo [62]
and OpenVLA [30] for training, which comprises 22.5 mil-
lion frames. For details regarding data distributions, please
refer to [30, 62].

Implementation Details. The model is trained with a batch
size of 256 and 8 diffusion steps per sample, initialized with
pre-trained vision and language module weights from [30].
The vision module (i.e., DINOv2 and SigLIP), language
module (i.e., LLAMA-2), and action module are all trained
end-to-end, following a constant learning rate of 2e− 5 for
over 135K iterations. Training is conducted on 16 NVIDIA
A100 GPUs with approximately 5 days using PyTorch’s
Fully Sharded Data Parallel (FSDP) framework. By default,
we use DiT-Base as our action model. The ensemble win-
dow K is set to be inversely proportional to the moving
distance per frame, which can be inferred from robots’ mo-
tion speed and observation frequency. In practice, we use
the standard deviation of actions from training set to deter-
mine K, i.e., 2 for RT-1 dataset with Google Robot, 7 for
BridgeDataV2 with WidowX Robot.

4.1. Simulated Evaluation
Evaluation Environment. After training, we evaluate our
model within the SIMPLER [33] evaluation environment.

This simulation platform is designed to bridge the real-to-
sim control and visual gap by faithfully replicating real-
world conditions for robots like the Google robot and the
WidowX robot. Extensive testing of various VLA mod-
els has shown a strong correlation between performance in
SIMPLER and real-world outcomes [33].

Evaluation Settings. SIMPLER offers two evaluation set-
tings: Visual Matching, which closely replicates real-world
tasks by minimizing discrepancies between the simulated
and real environments, and Variant Aggregations, which in-
troduces variations to Visual Matching by modifying ele-
ments such as background, lighting, distractors, and table
texture. For the Google robot, SIMPLER provides both the
two evaluation settings, each featuring the same four tasks:
1) Pick coke can; 2) Move near; 3) Open/close drawer; and
4) Open top drawer and place apple. For the WidowX robot,
SIMPLER provides only the Visual Matching setting, with
four tasks: 1) Put spoon on towel; 2) Put carrot on plate; 3)
Stack green block on yellow block; and 4) Put eggplant in
yellow basket. Success rate is used as the evaluation metric.

Experiments on Google Robot. Table 1 shows the success
rates of our model and compares our approach with exist-
ing VLA models on the Google robot across four tasks in
both SIMPLER settings. Our model achieves the highest
average success rate in both settings, with 74.8% in Visual
Matching and 61.3% in Variant Aggregation. Remarkably,
our model even outperforms RT-1 [7], which is trained on
a Google robot-specific dataset, by an average success rate
margin of 22.4% in Visual Matching and 17.6% in Variant
Aggregation. Additionally, the average success rate of our
model significantly surpasses that of RT-2-X [48], despite
our model being much smaller, with 7.6B parameters com-
pared to RT-2-X that has 55B parameters.

Experiments on WidowX Robot. Table 2 presents the
evaluation results of our model compared with the other
methods on the WidowX robot using the SIMPLER envi-
ronment in the Visual Matching setting. Our model also
attains the highest average success rate of 51.3%, outper-
forming the other models by a significant margin.

4.2. Real-World Evaluation with Realman Robot
Robot. We perform real-world experiments using the Real-
man Arm4, which has 7 DoFs and is equipped with a 1-DoF
gripper. Inverse kinematics is applied to determine joint an-
gles, enabling the end effector to align with the model’s
predicted pose. Task Definitions. We design three tasks

for real-world experiments, named “Pick”, “Stack”, and
“Place”:
• Pick up the Object and place it onto the Color

plate, where Object ∈ {Banana,Lemon,Avocado},

4https://www.realman-robotics.com/rm75-b.html
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Table 1. Comparison of our approach with existing VLA models on the Google robot across four tasks in two SIMPLER settings. All
models are trained on the Open X-Embodiment dataset, except for RT-1 which is trained exclusively on the Google robot subset.

Google Robot Method
Pick Move Open/Close Open Top Drawer

Average
Coke Can Near Drawer and Place Apple

SIMPLER
(Visual Matching)

RT-1 [7] 85.7 44.2 73.0 6.5 52.4
RT-1-X [48] 56.7 31.7 59.7 21.3 42.4
RT-2-X [48] 78.7 77.9 25.0 3.7 46.3
Octo-Base [62] 17.0 4.2 22.7 0.0 11.0
OpenVLA [30] 18.0 56.3 63.0 0.0 34.3
Ours 91.3 85.0 71.8 50.9 74.8

SIMPLER
(Variant Aggregation)

RT-1 [7] 89.8 50.0 32.3 2.6 43.7
RT-1-X [48] 49.0 32.3 29.4 10.1 30.2
RT-2-X [48] 82.3 79.2 35.3 20.6 54.4
Octo-Base [62] 0.6 3.1 1.1 0.0 1.2
OpenVLA [30] 60.8 67.7 28.8 0.0 39.3
Ours 89.6 80.8 28.3 46.6 61.3

Table 2. Evaluation results on the WidowX robot in the SIMPLER Visual Matching setting. For these tests, we repeat each task 5 times to
improve the statistical significance (see suppl. material for details), and thus the results of Octo may slightly differ from those in [33].

WidowX Robot Method
Put Spoon Put Carrot Stack Green Block Put Eggplant

Average
on Towel on Plate on Yellow Block in Yellow Basket

SIMPLER
(Visual Matching)

RT-1-X [48] 0.0 4.2 0.0 0.0 1.1
Octo-Base [62] 15.8 12.5 0.0 41.7 17.5
Octo-Small [62] 41.7 8.2 0.0 56.7 26.7
OpenVLA [30] 4.2 0.0 0.0 12.5 4.2
Ours 71.7 50.8 15.0 67.5 51.3

and Color ∈ {White,Blue,Yellow}.
• Stack the Color Object into the Color Object,

where Object ∈ {Cup,Bowl} and Color ∈
{Pink,White,Blue,Yellow}.

• Place the Color block onto the Color block, where
Color ∈ {Red,Orange,Blue,Green,Yellow}.

Fine-Tuning Data. We manually collect 48, 67 and 79
demonstrations for the “Pick”, “Stack”, and “Place” tasks,
respectively. Additionally, we capture 197 demonstrations
for various other tasks like “Pick up the orange can and drop
it into the basket”. In total, we gather 391 demonstrations
for fine-tuning. Notably, demonstrations for tasks identical
to the evaluation settings are very few. For example, there
are only two demonstrations for the specific task “put the
banana on the yellow plate.” Details of the fine-tuning pro-
cess are provided in the suppl. material.

Evaluation. Each task is evaluated as follows:

• “Pick”: 24 evaluations in total, with 8 trials per object
(Banana, Lemon and Avocado). We report the success
rate for each object, as well as the average success rate
across the three objects.

• “Stack”: 48 evaluations in total, with 24 trials per ob-
ject (Cup and Bowl). We report the success rate for each

object, along with the average success rate across both
objects.

• “Place”: 24 evaluations in total. This task is divided into
two steps: 1) picking up the block, and 2) placing the
block onto another block. We report the success rate for
each step, and the average success rate across both steps.

In each evaluation, we randomly choose the Color, and
place both the target and at least three distractor objects in
random positions on the table. We vary the table height
within the robot’s accessible range, and randomly set the
robot’s position around the table.

Results. Table 3 presents a comparison of our model with
Octo-Base [62] and OpenVLA [30]. For a fair evalua-
tion, all models are pre-trained on the OXE dataset and
subsequently fine-tuned using our collected demonstrations.
Our model achieves a notable improvement, outperforming
OpenVLA by a margin of 59.1% in success rate.

Generalization Evaluation. We assess the generalization
capability of the fine-tuned models on environments, dis-
tractors, tables, and objects that are not present in the fine-
tuning dataset. We exclude Octo-Base [62] from this evalu-
ation since its success rate in the seen task is already close
to zero.
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Pick up the avocado and place 
the it onto the blue plate.

Stack the blue cup into the 
yellow cup.

Stack the white bowl into the 
yellow bowl.

Place the red block onto the 
yellow block.

Pick up the green brush Open the oven door

Figure 4. Real-world evaluation environments of Realman robot (left) and Franka robot (right).

Table 3. Real-world evaluation with the Realman Robot across three tasks. All models are pre-trained on OXE and then fine-tuned on our
collected data.

Method
Pick Stack Place Task (All)

Banana Lemon Avocado Avg. Cup Bowl Avg. Pick Stack Avg. Avg.

Octo-Base [62] 25.0 0.0 0.0 8.3 0.0 0.0 0.0 12.5 0.0 6.3 4.9
OpenVLA [30] 12.5 12.5 0.0 8.3 25.0 6.3 15.6 25.0 4.2 12.5 12.1
Ours 75.0 50.0 87.5 70.8 95.8 68.8 82.3 87.5 33.3 60.4 71.2

Table 4. Real-world generalization evaluation with the Realman Robot on unseen tables with additional unseen distractors.

Method
Pick Stack Place Task (All)

Banana Lemon Avocado Avg. Cup Bowl Avg. Pick Stack Avg. Avg.

OpenVLA [30] 12.5 0.0 12.5 8.3 12.5 0.0 6.3 29.2 0.0 14.6 9.7
Ours 75.0 62.5 87.5 75.0 83.3 45.8 64.6 54.2 16.7 35.5 58.4

Table 5. Real-world generalization evaluation with the Realman
Robot on unseen colors, shapes and categories.

Method
Unseen Unseen Unseen

Avg.
Colors Shapes Categories

OpenVLA [30] 0.0 6.3 12.5 6.3
Ours 87.5 81.3 25.0 64.6

• Unseen Tables with Unseen Distractors. The table color
is altered to closely resemble the colors of the background
and floor, increasing visual complexity. Additionally,
three new unseen objects are introduced as distractors.
The results for each task is presented in Table 4.

• Unseen Colors, Shapes, and Categories. We assess per-
formance on unseen colors in the “Pick” task, using seen
objects (Banana, Avocado) with new colors (Green, Pink)
of plates. Each object-color combination is evaluated
twice, for a total of 8 trials.
For evaluating on unseen shapes, we define four new
tasks: (1-2) “Pick up the Shape block and put it into
the basket”, where Shape ∈ {Triangular,Arched}; (3)
“Pick up a small can and drop it into the basket”; (4)
“Stack one cylindrical block on top of another cylindri-
cal block”. Each task is evaluated 4 times, resulting in a
total of 16 trials.
For evaluating unseen categories, we introduce a new

Table 6. Real-world evaluation with the Franka Robot across four
tasks. All models are pre-trained on OXE and then fine-tuned on
our collected data.

Method
Close Open Pick Pick

Avg.
Oven Oven Bowl Brush

Octo-Base [62] 0.0 0.0 27.3 0.0 5.8
OpenVLA [30] 18.2 0.0 9.1 0.0 6.8
Ours 63.6 72.7 72.7 36.4 61.4

task: “Pick up the Object and place it into the bas-
ket”, where Object ∈ {Eggplant,Hammer}. This task
is evaluated 8 times in total, with 4 trials per object.
Table 5 presents the results, demonstrating that our ap-
proach exhibits strong generalization capabilities, partic-
ularly in handling unseen colors and shapes.

4.3. Real-World Evaluation with Franka Robot
Robot. To further demonstrate the generalization capability
of our approach, we employ an additional robot, the Franka
Arm5, which features 7 DoFs and a 1-DoF gripper, for real-
world evaluation.

Task Definitions. We define four tasks for evaluation: 1)
Close the oven door; 2) Open the oven door; 3) Pick up the
green brush; 4) Pick up a bowl containing food.

5https://franka.de/
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Table 7. Performance comparison of different action model net-
work structures.

Action Model Params
GR WR

Average
(VM) (VA) (VM)

MLP (3-Layer) 3M 52.2 52.4 47.1 50.6
MLP (7-Layer) 89M 61.4 48.0 48.1 52.5
DiT-Small 13M 73.3 51.3 51.0 58.5
DiT-Base 89M 74.8 61.3 51.3 62.5
DiT-Large 308M 76.7 59.3 58.3 64.8

Fine-Tuning Data. For each task, we collect 100 demon-
stration samples, resulting in a total of 400 samples used to
fine-tune all the models.

Results. Each task is tested over 11 trials. Table 6 presents
a comparison between our model, Octo-Base, and Open-
VLA, demonstrating that our approach achieves signifi-
cantly higher performance. Real-world results with the
Realman Robot (Table 3) and the Franka Robot (Table 6)
consistently validate the generalization capability of our ap-
proach across different robotic platforms.

4.4. Ablation Study

We employ SIMPLER evaluation on both the Google robot
and the WidowX robot for all ablation studies. We use the
following abbreviations: GR for Google Robot, WR for
WidowX Robot, VM for the SIMPLER Visual Matching
setting, and VA for the SIMPLER Visual Aggregation set-
ting.

Action Model Architectures. We evalute various action
model architectures on GR and WR. The architectures
examined include Multi-Layer Perceptrons (MLPs) with
depths of 3 and 7 layers, respectively, as well as a series of
diffusion transformers of varying scales. The hidden state
dimensions are set to 256 and 1024 for the two MLPs.

Table 7 shows that both MLP and transformer struc-
tures show improved success rate with increased model size.
With the same number of parameters, transformers outper-
form MLPs, likely due to the attention mechanism’s supe-
rior sequence modeling capabilities. Notably, DiT-Large
achieves the highest average success rate of 64.8%. As
shown in Figure 1, the average success rate of transform-
ers is approximately linearly related to the logarithm of the
model size. This indicates a promising scaling behavior of
the action module with diffusion transformers.

Multi-Step Action Prediction. During training, our model
predicts the action for the current step along with N future
steps. In Table 8, we examine the effect of varying N (0,
3, 15 and 31 future steps) on performance. Our results in-
dicate that predicting 15 future steps leads to the highest
performance.

Table 8. Impact of multi-step action prediction on model perfor-
mance. A future step setting of 0 indicates no multi-step action
prediction during training.

Future Steps
GR WR

Average
(VM) (VA) (VM)

0 73.4 49.0 6.3 42.8
3 70.4 58.9 37.1 55.5
15 74.8 61.3 51.3 62.5
31 54.3 47.6 51.7 51.2

Table 9. Comparison of our proposed action ensemble strategy,
Adaptive Ensemble, against two strategies introduced in [75].

Strategy
GR WR

Average
(VM) (VA) (VM)

Action Chunking 67.4 52.5 32.1 50.7
Temporal Ensemble 75.0 59.9 41.9 58.9
Adaptive Ensemble 74.8 61.3 51.3 62.5

Adaptive Action Ensemble. In Section 3.4, we present
an action ensemble strategy, termed Adaptive Ensemble, as
formulated in Eq. (4). We evaluate this approach against the
two ensemble strategies introduced in ACT [75]: Action
Chunking and Temporal Ensemble. Given a sequence of
action predictions of current observation, Action Chunking
executes the first two predictions directly. We use the same
ensemble windows for Temporal Ensemble and our Adap-
tive Ensemble. Table 9 presents the success rates of these
strategies. Our proposed Adaptive Ensemble outperforms
others, and we attribute this to its integration of similarity
weighting between current and historical predictions.

5. Conclusion

We have presented a large VLA model designed with a
specialized focus on action modeling. Unlike previous
VLAs that employ simple adaptations of vision-language
models for action prediction, CogACT separates cognitive
and action capabilities, using advanced diffusion trans-
formers as a dedicated action module. This approach
effectively addresses the continuous, multimodal, and
temporally correlated nature of robot actions, leading
to substantial improvements in performance and gen-
eralization. Our findings highlight the advantages of a
componentized VLA model, where a large VLM serves
as the cognitive foundation while the DiT action module
handles precise, sequential action prediction. Favorable
scaling behaviors of the action module have been observed,
where modest parameter increases yield significant per-
formance gains. The extensive experiments show that
our model not only significantly surpasses existing VLAs
in task performance and but also exhibits remarkable
generation capability to unseen objects and backgrounds.
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CogACT: A Foundational Vision-Language-Action Model for Synergizing
Cognition and Action in Robotic Manipulation

Supplementary Material

A. Training Data Details
A.1. Pretraining Data
Vision-Language Data. Our VLA model is built upon a
pretrained VLM, Prismatic [28]. Here, we briefly describe
the training data of [28] for self-containedness purposes and
refer the readers to [28, 49, 64, 74] for more details. The
Prismatic model uses DINOv2 [49] and SigLIP [74] as the
vision modules, which were trained with 1.2 billion images
and 40 billion image-text pairs, respectively. A LLaMa-
2 [64] is employed as the LLM backbone, which was trained
on 2 trillion language tokens. The vision and LLM modules
were further finetuned with 1.2 million multimodal instruct
tuning examples by [28].

Vision-Language-Action Data. We pretrain our model
on 25 VLA datasets from Open X-Embodiment [48]. As
in Octo [62] and OpenVLA [30], we restrict our train-
ing on datasets with single-arm end-effector control and at
least one third-person camera perspective. Our data mix-
ture strategy primarily follows [30, 62], except that we do
not use the Language Table [41] and Droid [29] datasets in
our entire training process due to their significant distribu-
tion disparities with other data. The detailed data mixture is
listed in Table I. In total, we use 0.4 million robot trajecto-
ries containing 22.5 million frames as our training data.

A.2. Finetuning Data for Real Robot Experiments
Realman Robot Setup. Our hardware setup for the Real-
man robot experiments is presented in Figure I. We built a
robot with two Realman arms on its shoulders, each having
7 degrees of freedom (DoF). We connect the left arm with
a 1-DoF gripper and only use this arm in all experiments.
We use Intel RealSense camera to capture the RGB image.
We perform hand-eye calibration each time we move the
camera. We convert all actions in the training data to the
camera coordinate system, and the actions generated by the
model to the robot coordinate system. To evaluate the gen-
eralization ability of our model across different viewpoints,
we randomly move the camera before our experiments. Our
robot is equipped with a mobile base, which was reposi-
tioned randomly before each experiment in order to assess
the model’s generalization ability.

Franka Robot Setup. The Franka Robot setup is shown
in Figure II. For this embodiment, a robot arm which has 7
DoF is rigidly attached onto a table. We use a Kinect DK

Table I. Our training data mixture using datasets from the Open
X-Embodiment dataset [48].

Dataset Ratio

Fractal [6] 27.1%
Kuka [27] 14.7%
Bridge [20, 66] 15.3%
Taco Play [43, 54] 3.4%
Jaco Play [18] 0.6%
Berkeley Cable Routing [39] 0.3%
Roboturk [42] 2.7%
Viola [78] 1.1%
Berkeley Autolab UR5 [12] 1.4%
Toto [76] 2.3%
Stanford Hydra Dataset [4] 5.1%
Austin Buds Dataset [79] 0.2%
NYU Franka Play Dataset [17] 1.0%
Furniture Bench Dataset [22] 2.8%
UCSD Kitchen Dataset [70] <0.1%
Austin Sailor Dataset [46] 2.5%
Austin Sirius Dataset [36] 2.0%
DLR EDAN Shared Control [52] <0.1%
IAMLab CMU Pickup Insert [55] 1.0%
UTAustin Mutex [57] 2.6%
Berkeley Fanuc Manipulation [77] 0.9%
CMU Stretch [44] 0.2%
BC-Z [26] 8.6%
FMB Dataset [40] 2.4%
DobbE [56] 1.6%

camera on the right to capture RGB images. The actions
throughout the entire pipeline are in the robot coordinate
system.

Data Collection. We use the touch controller from a Meta
Quest 2 device to teleoperate the robot and collect demon-
stration data for both robots. The translation and rotation of
the touch controller are mapped to the gripper’s 3D motion,
and a button controls the opening and closing of the gripper.
We record video frames at 30 Hz for the Realman robot and
5∼6 Hz for the Franka robot. We manually trim the video
segments from the recorded full videos and append the lan-
guage instructions describing the tasks.

Data Preprocessing. We follow the format of the Open
X-Embodiment dataset [48] to process both the two fine-
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Figure I. Realman robot setup (right arm not used).

Figure II. Franka robot setup.

tuning datasets of the Realman robot and Franka robot. We
crop and resize the image to 224×224, and transform the ac-
tions to relative translation offset and rotation changes. We
calculate the rotation changes in rotation matrix and trans-
form them to Euler angle for training. During training, the
Realman robot data is randomly subsampled to 5 Hz with
a time interval of 0.2 seconds between frames. The Franka
robot data is used as is.

A.3. Data Augmentation and Normalization
We utilize data augmentations for images like random crop,
random brightness, random contrast, random saturation and
random hue. When predicting future actions, for those that
exceed the length of the demonstration, we use a station-
ary action for padding. For the normalization of actions, we
normalize them to the range of [−1, 1]. We also tried nor-
malizing the actions to a Gaussian distribution N (0, 1), but
did not observe any performance improvement.

B. Evaluation Details
B.1. Simulated Evaluation
Evaluating robotic manipulation tasks is challenging due to
the varying hardware, environments, and tasks used across
different studies [33]. While standardized real-world setups

Table II. Simulated evaluation tasks and their number of trials in
SIMPLER.

Task # Trials
(VM) (VA)

Pick Coke Can 300 825
Move Near 240 600
Open/Close Drawer 216 378
Open Top Drawer and Place Apple 108 189
Put Spoon on Towel 120 (24×5) N/A
Put Carrot on Plate 120 (24×5) N/A
Stack Green Block on Yellow Block 120 (24×5) N/A
Put Eggplant in Yellow Basket 120 (24×5) N/A

can be beneficial, they often require substantial time and
resources [10, 16, 31, 76]. To address these issues while
preserving the accuracy of real-world performance evalua-
tions, SIMPLER [33] has developed a system for evaluating
manipulation policies trained on real data in simulated envi-
ronments. Therefore, we employs SIMPLER for our eval-
uations, offering an easily reproducible and completely fair
assessment framework.

Task Definitions. We utilize all task variants provided in
SIMPLER for our evaluations. The Google robot setup in-
cludes the following tasks: 1) “pick Coke can”, 2) “move
{obj1} near {obj2}”, 3) “(open / close) (top / middle / bot-
tom) drawer”, and 4) “open top drawer; place apple into
top drawer”. The WidowX robot setup includes: 1) “put
the spoon on the towel”, 2) “put carrot on plate”, 3) “stack
the green block on the yellow block”, and 4) “put eggplant
into yellow basket”. For the Google robot setup, both Visual
Matching (VM) and Variant Aggregations (VA) evaluations
are provided (See Sec. 4.1 in the main paper), while only the
Visual Matching (VM) evaluation is provided for the Wid-
owX robot setup.

The total number of trials for each sub-task is shown
in Table II. Note that to accommodate the limited number
of the original trials (24 per task) on the WidowX robot,
we repeat each original task trial five times (with different
random initialization seeds) to enhance the statistical sig-
nificance. For more detailed information on the tasks and
evaluation protocols, we refer the readers to the SIMPLER
paper [33].

Implementation Details. All simulated evaluations are
conducted on a single NVIDIA A6000 GPU or a sin-
gle NVIDIA A100 GPU. During inference, we employ
DDIM [59] sampling with 10 sampling steps and a
classifier-free guidance (CFG) [23] coefficient of 1.5.

We apply a unified adaptive action ensemble strategy
(described in Sec. 3.4 in the main paper) across all our mod-
els, where the hyperparameter α is set to 0.1. The ensemble
window size K determines the number of historical obser-
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Pick Stack Place

Figure III. Seen task setups on the Realman robot.

Pick Stack Place

Figure IV. Unseen task setups on the Realman robot.

vations and their predicted actions to be used. Since differ-
ent dataset have varying control frequency and robot speed,
the window size K should be adaptive. We select the win-
dow sizeK such that the product ofK and the average stan-
dard deviation (std) of the 6D action per timestep remains
constant across different datasets. Formally, this relation-
ship can be expressed as C = K × std, where C is a con-
stant representing the distance and angle traversed by the
robot over the last K steps. Empirically, we set the C to 0.2
for all experiments and derive their K accordingly.

For the experiments on the Google robot, the task suc-
cess rates of the pervious methods were evaluated by [33]
and incorporated into this paper, except for OpenVLA [30],
which was not included in [33]. For OpenVLA, we directly
evaluate it using the weight from its official repository6.
On the WidowX robot, the performance of RT-1-X [48]
is directly reported as in [33] and OpenVLA is evaluated as
described above. For Octo-Base and Octo-Small [62], we
incorporate more random seeds and conduct five retests to
mitigate volatility in their probabilistic sampling. For all
configurations of our models, we evaluate them using the
same number of tests as those used for Octo. Note that
the performance of RT-2-X on WidowX has not been re-
ported [33], and no model weights are publicly available
for evaluation.

Visualization Results. Figure V provides the successful
examples of each task executed by our default model on the
Google robot, while Figure VI presents those on the Wid-
owX robot.

6https://huggingface.co/openvla/openvla-7b-prismatic

Table III. The hyperparameters of different action modules.

Action Model # Layers Emb Dim # Heads # Params

MLP (3-Layer) 3 256 N/A 3M
MLP (7-Layer) 7 1024 N/A 89M
DiT-Small 6 384 4 13M
DiT-Base 12 768 12 89M
DiT-Large 24 1024 16 308M

B.2. Real-World Evaluation
Task Definitions. Section 4.2 in the main paper defines
three tasks “Pick”, “Stack” and “Place” on the Realman
robot. The setups of these tasks in the seen environment
are illustrated in Figure III, while those on the unseen table
are illustrated in Figure IV. Section 4.3 in the main paper
defines four tasks: “Close the oven door”, “Open the oven
door”, “Pick up the green brush” and “Pick up a bowl con-
taining food”. The setups of these tasks are presented in
Figure IX.

Implementation Details. The finetuning process was
conducted on 16 NVIDIA A100 GPUs, with all models in-
volved in the comparison utilizing PyTorch FSDP for full
finetuning and a batch size of 256. For our method, we sim-
ply tested one finetuned checkpoint at 10K finetuning steps,
which takes 7.5 hour’s finetuning time. For Octo [62] and
OpenVLA [30], we tested multiple finetuned checkpoints
at different steps and select the ones that worked best in
the real-world tasks. Specifically, for the Realman robot,
Octo uses the 20K checkpoint, while OpenVLA uses the
30K checkpoint; both models use the 30K checkpoint on
the Franka robot. All finetuning data follows the same data
augmentation as used during pretraining.

Visualization results. Figure VII and VIII present evalu-
ation examples of each tasks executed by our default model
on the Realman robot, while Figure IX provides evaluation
examples of each tasks on the Franka robot.

C. Ablation Study Details
C.1. Action Model Architectures
As described in Sec. 4.4 in the main paper, we study the per-
formances of different action models on the Google robot
and WidowX robot. Table III presents the hyperparame-
ters of all the action modules mentioned in Sec. 4.4. The
MLP components of these models are structured such that
each MLP block expands the embedding dimension by four
times and then scales it back to the original embedding di-
mension. The structure of the MLP (3-layer) model is con-
sistent with the model architecture in Octo [62]. Table 7
in the main paper illustrates that such small action models
have significant limitations in modeling actions and perform
far worse than the DiT models.
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Pick Coke can. (Visual Matching)

Move  Pepsi can near orange. (Visual Matching)

Open middle drawer. (Visual Matching)

Open top drawer; place apple into top drawer. (Visual Matching)

Pick Coke can. (Variant Aggregations)

Move sponge near apple. (Variant Aggregations)

Close bottom drawer. (Variant Aggregations)

Open top drawer; place apple into top drawer. (Variant Aggregations)

Figure V. Visual examples of each task on the Google robot driven by our model.

Table IV. Comparison of different classifier-free guidance coeffi-
cients [23] in simulated evaluations.

CFG Scale
GR WR

Average
(VM) (VA) (VM)

1.0 66.9 54.0 46.3 55.7
1.5 74.8 61.3 51.3 62.5
3.0 76.6 63.1 48.3 62.7

C.2. Classifier-Free Guidance Scale
During inference, the classifier-free guidance (CFG) is al-
ways applied with a default scale of 1.5, as the experiments
show that incorporating the CFG technique significantly im-
proves success rates. Different CFG scales are evaluated in
Table IV.
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Put the spoon on the towel. (Visual Matching)

Put eggplant into yellow basket. (Visual Matching)

Put carrot on plate. (Visual Matching)

Stack the green block on the yellow block. (Visual Matching)

Figure VI. Visual examples of each task on the WidowX robot driven by our model.
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Place the yellow block onto the green block; Place the red block onto the yellow block. (Unseen table with unseen distractors)

Stack the yellow bowl into the white bowl; Stack the blue bowl into the yellow bowl.(Unseen table with unseen distractors)

Pick up the pink cup and stack the pink cup into the blue cup. (Unseen table with unseen distractors)

Pick up the lemon and place it onto the white plate. (Unseen table with unseen distractors)

Place the yellow block onto the green block; Place the blue block onto the yellow block. (Seen)

Stack the yellow bowl into the white bowl; Stack the blue bowl into the yellow bowl. (Seen)

Stack the pink cup into the white cup. (Seen)

Pick up the banana and place the it onto the yellow plate. (Seen)

Figure VII. Examples of real-world seen tasks and unseen-table-with-unseen-distractors tasks on the Realman robot driven by our model.
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Put the red can into the basket. (Seen)

Put the yellow can (Unseen) into the basket.

Stack the cylindrical (Unseen) blocks.

Put the screwdriver (Unseen) into the basket.

Put the blue clamp (Unseen) into the basket.

Put the arched block (Unseen) on the pink (Unseen) plate.

Put the blue measuring tape (Unseen) into the basket.

Arrange fruits on plates. (Seen)

Put the green mug (Unseen) into the basket.

Put the triangular block (Unseen) into the basket.

Figure VIII. More examples of different real-world tasks on the Realman robot using our model.
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Pick up a bowl containing food. (Seen)

Open the oven door. (Seen)

Close the oven door. (Seen)

Pick up the green brush. (Seen)

Figure IX. Visual examples of real-world tasks on the Franka robot using our model.
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